Three-Dimensional Modeling of Bipolar Charge-Carrier Transport and Recombination in Disordered Organic Semiconductor Devices at Low Voltages

F. Liu, H. van Eersel, P. A. Bobbert, and R. Coehoorn

Phys. Rev. Applied 10, 054007 (2018)

The electroluminescence from organic light-emitting diodes can be predicted with molecular-scale resolution using three-dimensional kinetic Monte Carlo (3D KMC) simulations [M. Mesta et al., Nat. Mater. 12, 652 (2013)]. However, around and below the built-in voltage KMC simulations are computationally inefficient. 3D master-equation (3D ME) simulation methods, which are fastest for low voltages, are so far mainly available for describing unipolar charge transport. In such simulations, the charge-carrier interactions are treated within a mean-field approach. It is not a priori evident whether such simulations, when applied to bipolar devices, can be extended to include the Coulomb attraction between the individual electrons and holes, so that charge-carrier recombination is sufficiently well described. In this work, we develop a systematic method for extending 3D ME simulations to bipolar devices. The method is applied to devices containing materials with Gaussian energetic disorder, and validated by a comparison with the results of 3D KMC simulations. The comparison shows that the 3D nonuniformity of the molecular-site-resolved carrier concentration and the one-dimensional layer-averaged profile of the recombination rate are fully retained, and that the 3D nonuniformity of the molecular-site-resolved recombination rate is fairly well retained.

Powered by: Bumblebee

Full paper